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Abstract
Clinical trials over the last 15 years have demonstrated that cell and gene therapy for cancer,
monogenic and infectious disease is feasible and can lead to long-term benefit for patients (1).
These trials however have been limited to proof of principle and were conducted on modest
numbers of patients or over long periods of time. In order for these studies to move towards
standard practice and commercialization, scalable technologies for the isolation, ex vivo
manipulation and delivery of these cells to patients must be developed. Additionally, regulatory
strategies and clinical protocols for the collection, creation and delivery of cell products must be
generated. In this article we will review recent progress in hematopoietic cell and gene therapy,
describe some of the current issues facing the field and discuss clinical, technical and regulatory
approaches used to navigate the road to product development.
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Introduction
The transition from the laboratory to the clinic (bench to bedside) is well charted for small
molecules but less so for cellular therapeutics. Moving a cell product from the basic research
laboratory, through process development and onto manufacturing and clinical trials is
known as translational research (2) and has become the focus of both federal and private
investment. Passage through this proverbial “valley of death” is typically where most
candidate therapeutics are stalled, many to never see the clinic. The funding of over 49
Clinical and Translational Science Award centers across the country reflects the NIH view
that translational sciences are a high priority in the NIH roadmap for medical research (3).
The stages of developing (translating) new therapeutics have been broken down into distinct
phases (often termed T1 - T3 activities) to describe the translation from basic science to
clinical trials (T1), clinical trials to clinical practice (T2) and broad dissemination to the
population (T3)(4). We often only think of the T1 component of this process but all of the
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steps are necessary to justify the investment in research made by the Federal Government
and private industry.

Like any new medical treatment, the initial years of clinical investigation defined both the
utility and limitations of cellular therapy but also led to significant innovation and
development of infrastructure in support of subsequent, more advanced studies. For
example, bone marrow transplantation was one of the first and still most widely used forms
of cell therapy and has helped define both the therapeutic potential of and significant hurdles
in developing stem cell products. An important (enabling) developments in cellular therapy
was the discovery of a subpopulation of white blood cells expressing the CD34 antigen that
contains virtually all of the long-term hematopoietic reconstituting (stem cell) activity in a
bone marrow graft (5). The correlation between the number of CD34+ cells transplanted and
successful engraftment has helped establish the first stem cell therapy dosing specification to
be used in standard clinical practice; a minimum of 2 ×106 CD34+ cells/kg for complete
hematopoietic recovery (6). Moreover, CD34+ cells have become the substrate of choice for
genetic modification to treat a number of disease indications with an autologous product (7).
In a similar fashion, allogeneic transplantation of bone marrow has led to an understanding
of the benefits transfer of T-cells with anti-tumor as well as the potentially devastating
consequences of T-cell mediated graft versus host disease (GVHD)(8). These latter
observations have played a major role in the development of adoptive immunotherapy (AI)
strategies for cancer and infectious disease and will be used as examples of how subsequent
cell therapies may be developed.

Proof of Concept - Adoptive Immunotherapy
A prominent example of the power of adoptive immunotherapy is the provision of anti-viral
immunity following hematopoietic stem cell transplantation where cytomegalovirus (CMV),
Epstein-Barr virus (EBV) and adenoviral infections are the primary cause of morbidity and
mortality (9-11). Since the demonstration of transfer of anti-viral immunity with isolated
clones of T-cells (12-14), numerous approaches have emerged to enrich, isolate or otherwise
engineer immunity to viruses (14-22). An example is the use of EBV-transformed lymphoid
cells lines (LCL) as antigen presenting cells which can be infected with adenoviral vectors
expressing both adenoviral and CMV peptides. The LCL then act as antigen-specific feeders
during T-cell expansion and result in a population of T-cells with enriched specificity for all
three (EBV, Adeno, CMV) viral antigens (23, 24). These approaches have met with
reasonable clinical success in controlling CMV and adenoviral infections as well as EBV-
associated lymphoproliferative disease (18, 25, 26), although for CMV immunity, the
number and identity of CMV epitopes required to confer broad protective immunity is still
of significant debate (24, 27). A recent safety report on over 180 recipients receiving over
380 infusions of a range of antigen-specific and/or engineered T-cells indicate that the
treatments are safe, without evidence of severe adverse events related to infusion and that
close monitoring can be limited to a short period following infusion (28). These studies
demonstrate the safety and efficacy of adoptive immunotherapy for a variety of viral
pathogens and have resulted in the development of methodologies to prepare and release T-
cells for clinical use that have driven the field forward towards GMP compliant production
platforms (24, 29). Additionally, regulatory policy and practice at the FDA has been shaped
(in part) by the progression of these trials from the laboratory to the clinic and back in an
iterative process that helps fine tune the translational infrastructure.

Another compelling and well-tested application of adoptive immunotherapy is the use of
tumor-infiltrating T-lymphocytes (TIL) to treat melanoma (30-33). A recent report by
Rosenberg et al summarizes the results from three separate clinical trials in which ninety-
three patients with recurrent, refractory stage IV melanoma were treated with ex-vivo
expanded TIL (34). Patients were infused with the TIL following a lymphodepleting

DiGiusto and Kiem Page 2

Cytotherapy. Author manuscript; available in PMC 2013 August 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



preparative regimen (cyclophosphamide and fludarabine) ± total body irradiation (0, 2, 12
Gy TBI). (Note: when TBI was administered, patients also received an autologous stem cell
transplant). All patients received high-dose IL-2 (720,000 IU/kg) following infusion of TIL
to support their proliferation and in vivo activity. Overall (RECIST) response rates were as
high as 72% with (durable) complete responses in up to 40% of patients who received the
CyFlu + 12 Gy TBI. Interestingly, the highest rate of survival at 5 years was among those
patients who had undergone prior immunotherapy with anti-CTLA-4 antibody (Ipilumimab).
Ipilumimab blocks CTLA-4-mediated down regulation of T-cell activity and presumably
allows for a more sustained anti-tumor response by the infused cells. This series of trials
confirms the utility of TIL in treating metastatic tumors but also supports previous evidence
that multiple factors work to limit the activity of tumor-associated T-cells in vivo (35, 36).
Ex-vivo expansion of tumor-infiltrating T-cells can overcome some of the in vivo anergy
induced by the tumor microenvironment but the conditioning of the patient with CyFlu and
irradiation creates an in vivo environment favoring homeostatic proliferation and (un-
suppressed) expansion of adoptively transferred T-cells and results in more durable
complete responses. While this is currently the most promising therapy for melanoma,
concerns still exist about the quality of T-cells from patients with large tumor burdens or
‘high antigen loads”(37). Recent evidence demonstrates that T-cells isolated from tumor-
infiltrating lymph nodes express higher levels of markers associated with cellular
“exhaustion” (apoptosis genes, CTLA-4) which may partly explain the limited ability to
generate TIL from some patients and efficacy in less than half the patients treated (38).
Nonetheless, similar attempts to isolate TIL from other solid tumors are currently under
investigation (39-44).

In a similar fashion, T-cells from peripheral blood of allogeneic donors have been expanded
ex-vivo in an attempt to generate allogeneic anti-tumor T-cells for a number of
hematological malignancies (45). These studies have demonstrated the therapeutic potential
of the approach but graft versus host disease was observed in some patients and remains a
significant concern. In a more recent study, investigators looked at the role of vaccination as
a way to boost post transplant immunity to tumor through the use of primed autologous T-
cells at the time of ASCT (46). Multiple myeloma patients undergoing ASCT were given ex-
vivo expanded autologous T-cells collected following immunization with tumor peptides
(hTERT, surviving) and pneumococcal peptides (HLA-A2+ patients) while others (HLA-
A2- patients) received T-cells following pneumococcal vaccine only or no vaccine.
Accelerated cellular and humoral immunological recovery was observed in patients
receiving peptide primed T-cells and vaccination again after transplant (relative to control
patients who received unprimed ex-vivo expanded T-cells) with evidence of enhanced
immune reactivity to pneumococcal peptides in all patients and additionally to hTERT and
survivin in 36% of the multi-peptide immunized patients. However, hTERT and survivin
response was not correlated with increased event free survival nor was overall survival
different between these groups. Thus, in vivo priming of T-cells followed by ex-vivo
expansion and transplant provides enhanced protective immunity to viral infections, but
does not always result in improved outcomes with respect to tumor progression. The
apparent difference in anti-viral and anti-tumor responses remains a significant hurdle to
progress in cancer immunotherapy. In this study, event free survival was correlated with a
low level of CD4+/FoxP3+ regulatory T-cells in the infusion product and in vivo following
transfer. This is consistent with the idea that conditions favoring un-suppressed T-cell
activity are correlated with improved clinical outcome.

Where anti-tumor immunity cannot be isolated from the existing T-cell repertoire,
investigators have engineer specificity into T-cells by transfer of an antigen specific
receptor. Primary human T-cells have been successfully modified to express cloned α/β T-
cell receptor genes with known specificity and MHC-restriction (47-50) or chimeric antigen
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receptors (CAR) that confer antigen specificity in the absence of MHC restriction (51, 52).
Antigen specific T-cell receptors can transfer the specificity of a T-cell clone to tumor
antigen but the recognition of antigen is restricted the HLA-type of the donor. CAR, on the
other hand, are comprised of single chain antibody domains coupled to T-cell signaling
domains and recognize native antigen. While some success has been described in the clinical
translation of these and other adoptive immunotherapy approaches (53-57) immune
responses to transgene-encoded proteins and cellular senescence can limit the persistence of
cells following adoptive transfer (37, 58, 59). Improved intracellular signaling in CAR
constructs that include a variety of T-cell co-stimulatory signal domains (CD28, 4-1BB or
OX40) helps prevent apoptosis and results in more robust proliferation. Several
investigations have concluded that provision of a co-stimulatory signal prolongs the survival
of T-cells through the increased expression of anti-apoptotic genes and results in enhanced
in vivo persistence and anti-tumor efficacy (60-64).

One of the more extensively studied CARs is that for CD19 in B-cell neoplasia (62, 65-70).
The potential of two different co-stimulatory domains in CAR modified T-cells for
eradicating tumor was recently reported by two independent groups and has established the
clinical utility of the approach (71, 72). Bretjens et al evaluated the use of autologous CD19-
CAR28ζ T-cells (expressing both CD28 and CD3ζ signaling domains) to treat CD19+
chronic lymphocytic or acute lymphoblastic Leukemia (CLL or ALL) patients. The CD19-
CAR28ζ T-cells homed to bulky tumor in vivo, persisted and retain cytolytic activity for 8
days. Importantly, this effect was only observed in patients with prior lymphodepleting
chemotherapy. Three of five evaluable patients (those who received lymphodepleting
chemotherapy) showed reduced or stable disease lasting from 2-6 months. In a similar study,
a patient with CLL who's disease was progressing following Rituximab was treatment
received 3×108 CD19-CAR(ζ/4-1BB) modified T-cells following lymphodepleting
chemotherapy. While the patient experienced immune response-related events within the
first week following infusion (fever, chills, rigors etc.) and tumor lysis syndrome at 22 days,
by day 28 the tumor adenopathy was no longer palpable and there was no evidence of CLL
in the bone marrow. Sustained remission was reported at up to six months following
treatment. The highest level of CD19CAR+ T-cell in the patient was at the time of tumor
lysis syndrome and represented over a three log expansion of the infused cells. Importantly,
while the CD19CAR+ T-cells were detected for up to six months after infusion, the total
number of cells contracted over ten fold, demonstrating a controlled immune response to
antigen. These studies demonstrate that the provision of a co-stimulatory signal leads to
sustained objective responses in patients treated with CAR-modified T-cell products and
reinforces the requirement for prior conditioning of the patient.

Taken together, the recently reported results from adoptive immunotherapy trials have
demonstrated the potent anti-viral and anti-tumor response of T-cells following in vivo
priming, ex vivo genetic modification and expansion. It is now clear that lymphodepleting
preparative regimens are important to success and that the persistence of the cells can be
mediated by sufficient signaling to prevent apoptosis (in vivo IL-2 or co-stimulatory
molecules). While the endogenous repertoire of T-cells found in tumor sites has been shown
to be sufficient for isolating anti-tumor T-cells, there is little control over the composition of
the product and the reasons for failure to provide clinical benefit in most patients are still
unknown. Thus, the potential of gene-modified T-cells into which the specificity can be
“engineered” is extremely important and has yet to be fully tested. The development of an
engineered T-cell is entirely dependent on identifying an optimal T-cell substrate for genetic
modification and to ensure sufficient persistence to provide therapeutic activity in vivo.
Several groups have now identified naïve (73-75), central memory (60, 69, 73, 76, 77) and
central memory stem cells (75, 78) as interesting cell substrate candidates for more in depth
investigation in this area. Clinical trials are now underway to test the clinical utility of gene
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modified central memory T-cell populations (S Forman personal communication) and more
are in the planning stages.

Proof of Concept - Stem Cell Gene Therapy
The last ten years have also seen a dramatic increase in the number (and success) of stem
cell based gene therapy trials. Allogeneic stem cell transplantation has been used in proof of
principle studies in patients with inborn immunodeficiencies (79, 80), or metabolic disease
(81) demonstrating disease correction via a cellular carrier of a wild type copy of the
relevant missing or mutated gene. More recently, allogeneic bone marrow transplantation of
an HIV positive patient with HIV-resistant (Δ32 CCR5-/-) donor stem cells resulted in long
term cure of HIV, demonstrating the genetic transfer of infectious disease resistance through
a stem cell product (82). These studies have provided proof of concept support for gene
replacement to correct monogenic or immunological disease but have also outlined
important limitations of the allogeneic transplant approach. The combined morbidity and
mortality of allogeneic transplantation (specifically graft versus host disease) and the low
frequency of matched related or fully allogeneic donors available for such a procedure
precludes the widespread application of this approach. It follows that cellular engineering of
autologous products to provide metabolic function, disease resistance or anti-tumor activity
would be a more feasible approach for most patients.

With the knowledge and technology developed around bone marrow transplantation,
numerous groups initiated clinical investigations using autologous gene-modified HSPC to
correct monogenic disease. Clinical gene therapy studies have been performed in children
with X-Linked or ADA-deficient severe combined immunodeficiency (SCID), Wiscott-
Aldrich Syndrome, β-thalassemia and Fanconi anemia (see below). Early clinical studies in
ADA-SCID were conducted using gamma-retroviral vectors expressing the human ADA
gene to genetically modify autologous bone marrow or cord blood-derived HSPC (83-85).
The outcomes have been promising, resulting in restored immunity and independence from
PEG-ADA enzyme replacement therapy with long term follow-up and independent
validation of the approach recently reported (86, 87). Attempts to replace the genetic
deficiency in X-Linked SCID (IL-2 receptor common gamma chain) via retroviral gene
therapy also showed clinical benefit, but resulted in a high rate of leukemia as the result of
insertional mutagenesis by the vector (88, 89). In a more recent report by Gaspar et al (90),
10 pediatric patients undergoing HSPC gene therapy for X-linked SCID demonstrated
variable but sustained immunological function with only 1 patient developing a T-cell acute
lymphoblastic leukemia as a result of the process. Comparable clinical efficacy has not been
observed in adults undergoing similar therapy (91). Similar results where clinical efficacy
was offset by troubling transgene insertion patterns and clonogenic dominance have been
observed in patients transplanted with retroviral vector-modified HSPC for Wiskott-Aldrich
syndrome (92) and chronic granulomatous disease (93, 94).

Thus, despite promising clinical results, gamma retroviral vectors are no longer considered
for most indications (ADA-SCID notwithstanding) due to the high risk of transformation or
progression to myelodysplasia in these patients.

Following this initial series of trials and in consideration of the transformational activity of
the gammaretroviral vectors, a series of gene therapy trials have demonstrated safe
efficacious genetic modification of HSPC using lentiviral vectors. The lentiviral vectors
used in these trial are derived from HIV but have had many essential genes removed (gag,
Pol, Env) to prevent viral replication in vivo. The viral coat glycoprotein has been replaced
with the vesicular stomatitis virus G-protein (VSV-G) to broaden host range (including cells
of the hematopoietic lineage) and the viral long terminal repeat regions have been
engineered to be self-inactivating, that is they are deleted upon viral integration in the
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genome, rendering the virus replication incompetent. Two pediatric patients with X-Linked
adrenoleukodystrophy were treated with HSPC that had been transduced with a lentiviral
vector encoding the ABCD1 transporter protein (the protein that is defective in
adrenoleukodystrophy) (95). The treatments resulted in objective clinical responses an arrest
of progressive cerebral demylenation and stabilized or improved neurological function
following treatment. Subsequent analysis of lentiviral insertion sites revealed that the
transgenic viral integration patterns were localized to specific genomic regions but were not
transforming (96).

A similar study in β-thalassemia has demonstrated transfusion independence in a single
adult subject 3 years following transplantation with HSPC modified by a lentiviral vector
expressing adult β-globin under the control of the endogenous β-locus control region cloned
into the vector (97). Interestingly, the integration of the transgene within the third intron of
the high mobility group AT-hook 2 (HMGA2) gene led to increased expression of the
transgenic β-globin sequences and accounted for most of the therapeutic β-globin expression
even though cells with this integration pattern represented 2-8% of the blood cells at 28
months. It was noted that HMGA2 expression was elevated >10,000 fold in cells with
HMGA2 intron 3 integrated vector. So, despite the general safety of the procedure,
significant concern about integration sites of lentiviral vectors remain. Nonetheless,
successful gene therapy trials in adults treated for hemophilia B (98) and Leber congenital
amaurosis (99) have also been reported and the number of trials demonstrating general proof
of principle continues to expand.

However, applications of gene therapy have proven to be more complicated when providing
systemic treatments for non-life threatening diseases. Our own studies in HIV gene therapy
at City of Hope were conducted in HIV patients undergoing autologous stem cell
transplantation for progressive lymphoma (100, 101). The purpose of the study was to
determine the safety and efficacy of RNA-based HIV inhibitors following transplant of
gene-modified CD34+ hematopoietic stem and progenitor cells (HSPC). Our results
demonstrate gene marking and anti-HIV gene expression (siRNA and ribozyme) in the
peripheral blood and bone marrow of treated patients for up to 36 months without evidence
of clonal dominance or leukemia. The frequency of gene modified cells was low in these
patients due to the ethical requirement for infusion of an (unmanipulated) backup HSPC
product until the gene modified HSPC were demonstrated to result in robust hematopoietic
engraftment. Subsequent studies are underway to evaluate the level of gene marking when
only the gene-modified cells are infused. Interestingly, a transient increase in gene marking
was seen following transient viremia in 2 of our patients and mirrors the putative selection
of gene-modified cells by virus seen in both animal models of HIV gene therapy and prior
clinical investigation (102, 103). One patient is scheduled for a temporary structured
treatment interruption of his HAART therapy during which viral load and the levels of gene-
marked cells will be followed. In order for this approach to be transferred to the non-
malignant HIV population (the ultimate target market) non-ablative conditioning regimens
will have to be developed and bone marrow may have to be considered as a source of
CD34+ cells as the cost and risks of harvesting mobilized peripheral blood may outweigh
the benefit of the procedure.

The Path Forward
With the described clinical trials having demonstrated proof of concept for cell and gene
therapy, we are now facing the bigger task of moving candidate therapeutics into larger
phase II trials to ask about the overall benefit in a more formal, controlled fashion. During
early phase clinical trials, it is common for investigators to manufacture cell products using
(qualified) research grade tissue culture devices and reagents as long as they are sterile,
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endotoxin free and do not pose a significant risk to the patient receiving the product.
Additionally, many processes are conducted with open steps such as feeding of cells in
culture, repeated centrifugations, transfer between vessels etc. Product characterization may
be limited to the expression of one or two cell surface markers (i.e. CD3, CD8, CD11b,
CD34) and in many cases, potency assays are limited to viability and cell count but do not
address the biological activity of the product as it relates to anticipated mode of therapeutic
action (cytokine secretion, cytotoxicity, proliferative potential, transgene expression etc.).
As products move from pilot or phase I trials to larger phase II/III trials, investigators must
do more to meet current federal good manufacturing practice (cGMP) requirements include
auditing and qualifying reagent manufacturers, developing closed cell processing
procedures, developing and qualifying potency assays, performing product stability and
distribution (shipping) studies and extensive safety testing for master and working cell banks
and viral seed stocks. Additionally, laboratory information management systems (LIMS)
will be required to track data on raw material, products and patients and are currently being
developed using available tools (104). The FDA provides guidance documents that describe
expectations for biologics manufacturing as products move through the clinical trial process.
Links to important government guidance documents are provided in Table 1. Additionally,
extensive information is available for those interested in resources for and advancements in
cell therapy through the ISCT website (www.celltherapysociety.org) and a user-based blog
known as the Cell Therapy Blog (http://celltherapyblog.blogspot.com/).

Typical phase II trials involve larger patient cohorts (up to several hundred) and are
designed to establish dosing and efficacy of the candidate therapeutic as well as extend data
on safety. When cells (or gene-modified versions) are the therapeutic candidates, the biggest
problem may be scaling “out” the process from one that easily produces cells for 5-10
patients to one where many more (50-100), simultaneous, patient-specific products may be
manufactured at one time. Few academic centers or small biotechnology companies have the
capability to manufacture cell products but numerous contract manufacturing organizations
are available to support those without the internal infrastructure (Table 2). For academic
investigators, the NHLBI supports the Production Assistance for Cellular Therapies (PACT)
program which is an excellent manufacturing resource for most academic centers working
from federally funded grants. PACT also provides regulatory guidance and statistical data
collection on products. More information on the process can be found at the PACT website
(www.pactgroup.net). Other NHLBI resources include vector manufacturing and toxicology
testing through the Gene Therapy Resource Program – GTRP (www.gtrp.org) and the
Science Moving towArds Research Translation and Therapy – SMARTT program
(www.nhlbi.nih.gov/new/SMARTT.htm) which identifies translational resources for
investigators seeking assistance.

Cell Processing and Culture
Perhaps the most important step in cell therapy is isolation of the cell substrate. Cells may be
isolated from a patient (autologous) or a healthy volunteer (allogeneic) or be derived from a
single source and divided into multiple individual doses (master cell bank). Primary cells
harvested from patients (tumor, blood, marrow) may need to be washed free of undesired
cells (fat, platelets red blood cells) and enriched for a target cell population (T-cells,
dendritic cells, stem cells). Many procedures will also require multiple steps involving
genetic modification and expansion (see below). Procedures employed during pilot and
phase I clinical investigations are typically performed manually, using methods, reagents
and devices that are not amendable to scale-up or do not fully meet clinical quality
requirements. Examples include the use of T-flasks to grow cells, ruminant animal derived
materials such as serum, trypsin and gelatin, and centrifugation to wash, concentrate and
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formulate samples. To address many of these issues, new technologies are emerging that
support process scale-up, automation and reduction of technical time and error.

Several groups have described automated closed systems for cell washing and formulation
that have been used successfully for clinical cell processing including closed system density
separations and elutriation (105-110). These large batch and continuous flow technologies
are automated, include sterile disposable plastic tubing sets, and support scaling to clinical
levels of cells (>10e10). Where these technologies have been adapted from blood banking or
other regulated industries, the devices often meet regulatory requirements for
instrumentation used in the manufacturing of clinical materials. There is however
opportunity to develop newer devices to address tissue specific processing issues such as
harvesting cells grown on matrixes or artificial scaffolds.

Selective enrichment and manipulation of cells with magnetic beads has been an enabling
technology for the development of clinical cell therapy applications. There are two clinical
scale magnetic cell selection systems currently used in clinical cell therapy applications; the
CliniMACS® system (Miltenyi Biotec, Bergisch Gladbach, Germany) and Dynabeads®
CD3/CD28 CTS™ (Life Technologies, Carlsbad California). The CliniMACS® device
employs small paramagnetic particles coupled to antibodies to selectively enrich cells based
on cell surface antigen expression or IFNγ secretion in response to specific antigens.
Current clinical applications include (but are not limited to) the isolation of CD34+ cells for
allogeneic transplantation (111, 112) and gene therapy (86, 95, 100), T-cells for adoptive
immunotherapy (27, 113, 114) and monocyte/dendritic cells for vaccine trials (115). The
larger magnetic beads (Dynabeads®) have also been used extensively in cell selection and
expansion. The co-localization of antibodies to the T-cell receptor CD3ε domain and an
antibody to the co-stimulatory CD28 molecule on the bead presents a powerful proliferative
signal to T-cells and has a long standing record of use in clinical T-cell expansion studies
(45, 46, 116-120). Both companies provide limited clinical reagent sets but beads ready for
antibody conjugation are also available for customized application. Both companies offer
access to their systems to qualified investigators via a letter of cross reference to a master
file on record with the FDA. An advantage of bead selection is the rapid processing of a
large number of cells in a short amount of time. However, continual refinement of the
definition of a hematopoietic stem cells (121), the identification of and debate over what T-
cell population is the best substrate for durable engraftment and antitumor activity (74, 77,
122, 123) have driven the field towards multiparameter isolation of cells for therapeutic
applications. Additionally, cells expressing low densities of antigen will bind many fewer
beads and are thus difficult to isolate by magnetic separation. All of these issue can (and
have been) addressed using multiparameter, fluorescence-activated cell sorting.

Currently, there are a limited number of fluorescence-activated cell sorters being used for
clinical applications and most are adaptations of research machines. The Influx® cell sorter
(BD Biosciences, San Jose, CA) will isolate cells at 25,000-75,000 cells per second based on
up to 16 parameters. It is equipped with a disposable fluidics kit to allow for easy
changeover between patient samples and a HEPA filtered cabinet to contain aerosol
generation during sorting. Its small footprint allows for installation in minimal spaces
compared to conventional cell sorters. However, sorters like the Influx are expensive,
required highly trained operators and are significantly complex with realistic potential for
“process deviation” during long sort runs. Additionally, since they generate aerosols and
cells are sorted into open tubes or plates, the ultimate clinical application of this technology
awaits smaller, closed-system sorting devices. Newer generation cell sorters based on
microelectromechanical (MEMS) technology are currently in development
(www.owlbiomedical.com) and address some of these aforementioned limitations of the
research devices.
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Cell culture also suffers from the limitation of technologies designed for research with
limited potential to scale up for clinical production. As mentioned above, multi-well plates
and T-flasks are often used to propagate cells in early stage clinical trials but these devices
are not scalable, are subject to the introduction of contaminants during manual
manipulations and are static in nature, requiring batch feeding and resulting in limited cell
densities. In order to address these and other (regulatory) issues and move towards larger
scale clinical studies, numerous labs have successfully transferred cell culture processes
from flasks and plates to gas permeable culture bags or closed system bioreactors (29, 55,
124-126). Culture bags can be customized to include any number or configuration of sterile
weld, luer or quick connect ports to facilitate sterile closed transfer of products between
vessels. Culture bags from 5 mL to 100 liters are manufactured by several companies
(American Fluoroseal Corporation, Charter Medical and Origen Biomedical) according to
the requisite standards for use in cell product manufacturing. Additionally, sterile tubing
sets, media bags and centrifuge tubes can be used to connect culture bags and other
processing devices using tubing welders and sealer designed for the blood banking industry.
These techniques facilitate addition or removal of media, growth factors or cells in a closed
system and thus reduce the potential for adulteration of products during handling. With the
ability to have all media, components, buffers and solutions manipulated in closed systems
the incidence of contamination of cell therapy products has been significantly reduced.
Thus, closed system cell culture bags have had a significant impact on meeting regulatory
requirements related to product safety. Newer disposable devices such as the G-Rex flask
(Wilson-Wolf Manufacturing, St. Paul, MN), provide enhanced gas exchange over standard
tissue culture flasks have also been shown to dramatically improve the densities of cells in
static culture. While not yet a completely closed system, this technology may find a specific
niche such as growing solid tissue fragments (to generate TIL) or other 3 dimension culture
applications (127).

At a larger scale, perfusion bioreactors like the WAVE (GE Healthcare, Fairfield, CT) have
been widely applied for cell therapy. The Wave is a disposable culture bag system has been
used mostly for growing suspension cells and contains programmable controllers for media
and nutrient perfusion. Using this system, cell densities 10 fold higher than static cultures
can be achieved (70, 126, 128, 129). Alternatively, a hollow fiber bioreactor that can support
the growth of either suspension or adherent cells has been developed (Quantum® Cell
Expansion System, Caridian BCT, Lakewood, CO) and is currently undergoing clinical
evaluation for mesenchymal stem cell production. The automated system includes a closed
culture disposable set for media addition, gas exchange and harvesting product. The
provision of these types of bioreactors allow for scaling cell culture to clinical levels,
controlling the process in an automated fashion and complying easily with regulations
related to ensuring the safety of products.

For some cells (especially HSPC), ex-vivo expansion is not a straight forward process.
During extended cell culture, HSPC can differentiate into cells with reduced ability to
engraft the bone marrow. Over the past few years, numerous strategies have emerged to
expand stem cells using a wide variety of approaches including Notch Delta interactions
(130, 131), homeobox genes (132, 133) and an aryl hydrocarbon receptor antagonist (134).
Most expansion strategies use expansion of CD34+ cells as a metric but some also employ
engraftment of immunodeficient mice as a measure of the stem cell content of an ex-vivo
expanded product. What has become clear is that even the immunodeficient mouse models
of hematopoiesis may not predict clinical outcome due to the complexity of homing and
engraftment of human cells. Comparisons of engraftment between immunodeficient mice
and non-human primates have shown disparities in the long term repopulation of the animals
with stem cells as determined by common gene integration sites in cells of the lymphoid and
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myeloid lineages (135, 136). Development of these strategies will require additional
investigations before ready for the clinic.

Genetic Modification
Among the lessons learned in the studies described above, perhaps the most prominent has
been that stable integration and expression of vector-encoded transgenes into primary cells
is a rare event and can lead to disrupted gene expression and leukemia. While pseudotyped
lentiviral vectors have demonstrated excellent efficacy in transducing a large number of
primary cell types and possess a better safety record (to date) than retroviral vectors (137),
they are not without limitations (138). Lentiviral vectors are typically produced in a transient
fashion by transfection of a human embryonic kidney cell line (HEK 293) with 3-4 helper
plasmids encoding essential viral elements (gag, pol and env) and the plasmid carrying the
vector backbone and therapeutic insert (139). The productions are transient because the
proteins required to produce and package virus are toxic to the producer cells (p24, VSV-G)
(138). This means that a new batch of plasmid and 293 cells must be used for every lot of
vector manufactured. Variability in the relative transduction of each plasmid can result in
significant differences in viral titer and quality and are not amenable to large-scale, repeated
clinical production. Once produced, the vectors must be concentrated and formulated for
both cryopreservation and transduction of target cells. Ongoing efforts to improve
productivity of lentiviral vectors for clinical use include the creation of stable packaging cell
lines (140-143), electroporation of suspension cultures of 293 cells (144), regulated
expression of the toxic accessory proteins (145-147) or combinations of the above(146).
Other strategies to improve vector quality have been aimed at concentration and purification
of vectors by ultrafiltration and chromatography (148). We continue to be hopeful that these
advances viral vector production will be incorporated into the manufacturing of clinical lots
over the next 5 years. It is also very important that these tools are made widely available and
not restricted by cost or proprietary considerations.

Genetic modification of cells has also advanced since the early gene therapy studies. In
addition to gene replacement, methods to silence gene expression by deletion of genomic
sequences or repair mutant genes by directed homologous recombination have been reported
(149-154). Zinc fingers are DNA binding proteins that can be engineered to bind to DNA in
a sequence specific fashion. Fusion of Zinc Fingers with the catalytic domain of a type II
restriction enzyme (Fok1) creates a zinc finger nuclease that is capable of making sequence
specific cuts in the genome of a target cells (155). The DNA repair mechanism of the target
cell attempts to repair the genomic damage using an error-prone mechanism (non-
homologous end-joining) which leads to deletions that result in elimination of the open
reading frame and thus expression of mature protein. Repair can also result in corrected
point mutations when a wild type donor template is included (149). The technology has also
shown excellent potential in for clinical implementation by targeting the elimination of
CCR5 gene expression for HIV gene therapy (156, 157), correcting point mutations in sickle
cell anemia (158), hemophilia (159) and α-1 anti-trypsin deficiency (160). Despite the
demonstrable efficacy and progress in the clinic, ZFN strategies have come under great
scrutiny regarding toxicity and the potential for off-target cutting (161-164).

Two similar but distinct genomic editing (meganuclease) technologies have been described
and are meant to address some of the limitations of the ZFN technologies. Transcription
activator-like effector nucleases (TALENS) have been reported to be as catalytically active
as some but not all ZFN and have other limitations (size and ease of delivery) that currently
limit their use in clinical applications (151, 165, 166). Another emerging family of gene
modifying nucleases are the homing endonucleases derived from a large family of short
intronic elements or “inteins” that can be engineered to mediate highly specific genomic
cutting in a wide variety of target genes (167). These relatively small proteins can be made
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highly specific and have been shown to disrupt or repair a variety of gene sequences
including RAG-1 and dystrophin (168) and may fill biotechnological niches that are not
effectively addressed by ZFN or TALENS.

Selective degradation of mRNA using small interfering RNA (siRNA) or micro-RNA
sequences has also been reported as a way to control endogenous gene expression
(169-174). RNA expression has the advantage of being non-immunogenic and thus is an
advantage over protein-based inhibitors. The expression of siRNA inside of target cells can
lead to the destabilization of disease promoting gene expression (175), elimination of viral
receptors (176, 177) or induction of cell death by targeting essential cell survival genes in
regulated manner(175, 178). Placement of micro-RNA sequences in the 3′ region of an
expressed transgene can limit expression in antigen presenting cells and thus avoid immune
recognition of therapeutic (transgenic) proteins (179). These new tools have the potential to
eliminate the need for randomly (or dangerously) integrating viral vectors.

It is often the case that viral vectors are deemed too risky, too expensive, too toxic or are not
effective for the particular application of molecular delivery. Several reports (and clinical
trials) include the use of suicide genes or inducible apoptosis systems to act as safeguards
when, despite the best safety efforts) cells go awry and threaten to result in malignant
disease or other life threatening clinical complications (180-182). Otherwise, closed non-
viral systems for introduction of DNA and peptides to dendritic cells and NK T-cell by
electroporation have been described (183, 184) and obviate the need for viral vectors in
some applications. Other systems such as nanoparticles and lipid-based complexes have also
been described and are currently being developed for clinical implementation (185-188).
Another promising technology being developed for genetic modification of cells is the use
of transposable genetic elements or Transposons. Transposons are ancient genetic elements
that utilize homologous recombination as a method for introducing genes into target cells at
homology-defined sites. One noteworthy example is the use of the Sleeping Beauty
transposon system to modify CD34+ blood stem cells and T-cells, the latter of which is
rapidly progressing through pre-clinical development and into clinical trials(185).

One of the major advantages of these novel genetic editing technologies is the potential to
avoid integration-mediated oncogenesis by prospectively inserting transgenic sequences into
“safe harbors” where transforming sequences are not present (189-192). A limitation of this
approach is the low efficiency with which modifications are made, generally requiring a
selection step or selective growth advantage of the modified cells to enrich for cells with
therapeutic potential. Significant advances in efficiency are thus required before these
techniques are applicable to most gene therapy applications.

The Next Chapter
As cell therapy product move from proof of concept towards more advanced (Phase III)
clinical trials, the need for specialized production, clinical and regulatory professionals
increases dramatically. These include process development scientists, quality systems and
regulatory affairs coordinators, protocol nurses, blood bank or surgical teams, primary care
(referring) physicians, clinical research associates, program managers, product development
staff and others. These individuals will need specialized training in the use of cells as
therapeutic products in order to support successful implementation. For example, at City of
Hope we have developed a job description for a Cell Pharmacist in recognition of the fact
that administration of cell products has all of the requirements of pharmaceuticals (patient
eligibility, dose verification, review of contraindications etc.) as well as specialized
requirements like final product formulation and filling of specialized delivery devices. The
California Institute for Regenerative Medicine (CIRM) has supported extensive
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development of cell therapy infrastructure in California and proffered the idea of an alpha
cell therapy clinic to provide centralized facilities with the requisite infrastructure to support
the translation of promising new cell based therapies to the clinic (193, 194). Together, these
resources and progressive planning are having a significant impact on current cell and gene
therapy trials.

As cell products move even further towards commercialization, a clean separation of the
clinical research aspects of cell therapy will give way to product development concerns and
regulatory compliance. It is expected that process changes will occur in order to control cost
of goods, ensure product quality and develop product marketing and distribution systems.
Validation of manufacturing procedures and product qualification assays may require
significant technology development. Also, the ability to receive a cell product from a
patient, ship to and process at a central facility and return the product to the patient in a
timely, qualified and efficacious fashion will determine the feasibility of widespread
application of any personalized cell product. The regulatory requirements in this area are
just beginning to take shape as the first cell therapy products are brought to market.

Conclusion
Recent advances in cell and gene therapy have demonstrated the proof of concept that cells
are potent agents for treating monogenic, infectious and neoplastic disease. Moreover, cell
therapy potentially may provide a single dose, long term solution to disease intervention that
may rapidly outpace the current more transient treatments such as chemotherapy, radiation
therapy, protein replacement (ADA) or long term anti-virals (HAART) as the primary
treatment for disease. The recent development of infrastructure and advances in the
understanding of the physical and biochemical processes that govern cell isolation,
expansion and genetic modification promise to launch cell and gene therapy onto the
forefront of medical care. Significant investment in cell therapy by State and Federal
government agencies and the biopharmaceutical industry will be required to implement the
widespread dissemination of what are now considered “boutique” therapies if we are to
advance from proof of concept to acceptance in the medical community. Only when
physicians have a Current Procedural Terminology (CPT) code for reimbursement of cell
therapy procedures offered can we claim “mission accomplished”.
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Table 1

Links to important Cell and Gene Therapy Guidance Documents

Cell and Gene Therapy
Guidance:

http://www.fda.gov/BiologicsBloodVaccines/GuidanceComplianceRegulatoryInformation/Guidances/CellularandGeneTherapy/default.htm

Process Validation Guidance: www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM070336.pdf
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Table 2

Contract manufacturing organizations for biologics production.

Organization Web URL

Lonza www.lonza.com

PX'Therapeutics www.px-therapeutics.com/px_cGMP_manufacturing.php

Omnia Biologics www.omniabiologics.com/

Therapure Biopharma www.therapurebio.com/

Progenitor Cell Therapy www.progenitorcelltherapy.com

SAFC www.safcglobal.com

Florida Biologix www.floridabiologix.ufl.com

Waisman Biomanufacturing www.gmpbio.org
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